Handling uncertainties in background shapes: the discrete profiling method
نویسندگان
چکیده
منابع مشابه
Handling variations and uncertainties
DRASTIC DEVICE SHRINKING, lower power supply levels, and increasing operating speeds significantly reduce noise margins and increase variations in process, device, and design parameters. These trends lead to lower reliability and higher design uncertainty for hardware components. With further technology scaling, high variability and low reliability are bound to become the predominant challenges...
متن کاملA background-priority discrete boundary triangulation method
Discrete boundary triangulation methods generate triangular meshes through the centers of the boundary voxels of a volumetric object. At some voxel configurations it may be arbitrary whether a part of the volume should be included in the object or could be classified as background. Consequently, important details such as concave and convex edges and corners are not consistently preserved in the...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
A Bayesian framework for geometric uncertainties handling
We present a Bayesian CAD modeler for robotic applications. We describe the methodology we use to represent and handle uncertainties using probability distributions on the system parameters and sensor measurements. We address the problem of the propagation of geometric uncertainties and how to take this propagation into account when solving inverse problems. The proposed approach may be seen as...
متن کاملFour Advances in Handling Uncertainties in Spatial Data and Analysis
Data quality and uncertainty modeling for spatial data and spatial analyses is regarded as one of the disciplines of geographic information science together with space and time in geography, as well as spatial analysis. In the past two decades, a lot of research efforts have been devoted to uncertainty modeling for spatial data and analyses, and this paper presents our work in this research are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Instrumentation
سال: 2015
ISSN: 1748-0221
DOI: 10.1088/1748-0221/10/04/p04015